Using finite difference method for solving linear two-point fuzzy boundary value problems based on extension principle

author

Abstract:

In this paper an efficient Algorithm based on Zadeh's extension principle has been investigated to approximate fuzzy solution of two-point fuzzy boundary value problems, with fuzzy boundary values. We use finite difference method in term of the upper bound and lower bound of $r$- level of fuzzy boundary values. The proposed approach gives a linear system with crisp tridiagonal coefficients matrix. This linear system determines $r$-level of fuzzy solution at mesh points. By combining of this solutions, we obtain fuzzy solution of main problem at mesh points, approximately. Its applicabilityis illustrated by someexamples

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Non-Classical Finite Difference Method for Solving Two Point Boundary Value Problems

A new kind of finite difference method is presented for solving two point boundary value problems. The method is based on rational function approximation technique and its development and analysis is based on Taylor series and binomial expansions. Local truncation error of the method is discussed. The method is tested on model problems and the numerical results are presented. The numerical resu...

full text

Chebyshev finite difference method for a two−point boundary value problems with applications to chemical reactor theory

In this paper, a Chebyshev finite difference method has been proposed in order to solve nonlinear two-point boundary value problems for second order nonlinear differential equations. A problem arising from chemical reactor theory is then considered. The approach consists of reducing the problem to a set of algebraic equations. This method can be regarded as a non-uniform finite difference schem...

full text

B-SPLINE METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEMS

In this work the collocation method based on quartic B-spline is developed and applied to two-point boundary value problem in ordinary diferential equations. The error analysis and convergence of presented method is discussed. The method illustrated by two test examples which verify that the presented method is applicable and considerable accurate.

full text

B-Spline Finite Element Method for Solving Linear System of Second-Order Boundary Value Problems

In this paper, we solve a linear system of second-order boundary value problems by using the quadratic B-spline nite el- ement method (FEM). The performance of the method is tested on one model problem. Comparisons are made with both the analyti- cal solution and some recent results.The obtained numerical results show that the method is ecient.

full text

Application of variational iteration method for solving singular two point boundary value problems

In this paper, He's highly prolic variational iteration method is applied ef-fectively for showing the existence, uniqueness and solving a class of singularsecond order two point boundary value problems. The process of nding solu-tion involves generation of a sequence of appropriate and approximate iterativesolution function equally likely to converge to the exact solution of the givenproblem w...

full text

Sinc-Galerkin method for solving a class of nonlinear two-point boundary value problems

In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 14  issue 2

pages  1- 18

publication date 2020-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023